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We develop a new methodology to examine the conditional and unconditional vertical
velocity induced by high-Reynolds-number bubbles rising in a uniform flow, at low to
moderate void fraction α (up to 15 %). These statistics provide a local description of
the perturbation of the liquid velocity around a test bubble in the swarm. In particular,
the attenuation of the length of the wakes with increasing void fraction is measured
for a large range of void fraction. The strong attenuation of the wakes is related to
wake intermingling mechanisms. The methodology also enables a definition of the
interstitial liquid flow. The velocity of the fluid averaged over all the interstitial volume
far away from the bubbles is introduced. It is a useful concept, in particular to define
the relative velocity, or for drift models. Our experimental results allow a discussion of
the predictions of irrotational drift models. For low void fraction (α � 2 %), potential
flow models provide practical estimates of the interstitial velocity field. At higher void
fractions, the effect of vorticity is important. A simple phenomenological model is
proposed to include the effect of the flow generated by the bubble wakes.

1. Introduction
An important question for high-Reynolds-numbers bubbly flows is how to

distinguish, in a meaningful way, between the flow generated locally by a bubble
and the perturbations in the interstitial regions caused by bubble interaction. It is
difficult to distinguish between velocity fluctuations caused by the wakes of bubbles
and the near-field perturbation caused by the bubbles themselves. Our purpose is to
obtain insight into the complex mechanisms of transport in the liquid phase of a
bubbly flow, using precise and appropriate definitions of the statistical properties of
the flow. The problem is addressed here for a homogeneous vertical flow perturbed by
a uniform injection of ascending bubbles. In such a flow, in the absence of pre-existent
turbulence, the random motions of the bubbles are responsible for all the random
motions of the liquid. While recent experimental investigations have enhanced our
comprehension of the behaviour of the fluctuations induced in bubbly flows (Zenit,
Koch & Sangani 2001; Risso & Ellingsen 2002; Garnier, Lance & Marié 2002), there
has been less work concerning the mean motion resulting from the anisotropy of
the random movements induced in the liquid by the preferential alignment of the
relative velocities of the bubbles with the vertical direction. In this work, we focus
our attention on the generation of a mean motion in the liquid phase by the bubbles.

Recent studies devoted to the liquid motions induced in inertial bubbly suspensions
have improved our knowledge of their dynamics. Risso & Ellingsen (2002) have given



88 V. Roig and A. Larue de Tournemine

a detailed experimental description of the statistical properties of the random motions
in a homogeneous bubbly flow at low void fraction and high Reynolds number. They
discussed the dependence of velocity statistics on the void fraction using conditional
averages of the velocity field measurements. They disentangled the contributions to
the velocity statistics of individual bubbles from those of hydrodynamic interactions,
making use of the detailed characteristics of the reference flow around a single bubble
discussed in Ellingsen & Risso (2001). The velocity disturbance induced by an isolated
bubble is representative, at least at low void fraction α and in the neighbourhood
of the bubble, of the velocity field induced in the vicinity of any individual bubble
present in a swarm, whereas the flow field in the regions far away from the interfaces
is determined by the hydrodynamic interactions. The effects of these interactions on
the pair distribution function and on the bubble-induced motions in the liquid have
been considered in particular by Koch (1993) and Esmaeeli & Tryggvason (1998,
1999). The dependence of the interactions on both the Reynolds number based on
the relative velocity and on the void fraction has recently been discussed in Legendre,
Magnaudet & Mougin (2003) for spherical particles.

In this contribution we present experiment results obtained in a uniform bubbly
flow. At low enough void fraction, the local flow around any bubble is characterized
by a Reynolds number Re =URdB/ν, and a Weber number, We = ρU 2

RdB/σ which
is a measure of the bubble deformability (ρ, ν, σ , UR and dB are respectively the
density and the viscosity of the liquid, the surface tension, the relative velocity and the
diameter of the bubble). Interactions between bubbles depend on the decrease rate of
the local perturbation induced by a bubble and on the void fraction α which controls
the characteristic distance between the bubbles. Depending on the values of Re, We
and α, a great variety of bubbly flows can therefore be observed. In this large domain,
we focus on the analysis of inertial bubbly flows at large Re (typically Re = 200), and
moderate We (We =0.4−0.6), with void fractions up to 15 %. Practical bubbly flow
problems which occur in industry tend to be at void fractions in such a range.
Moreover, there is a lack of concepts able to describe the velocity field in this case.

The present experimental work aims to contribute to the analysis of bubbly flows
at moderate void fraction, using the idea that the global averaged dynamics of
bubbly flows depend on the structure of the local flow around each bubble, which
is strongly governed by the boundary conditions at its interface, as well as on the
hydrodynamic interactions between the flow disturbances induced by each bubble.
We therefore introduce a distinction between statistics conditioned or not by the
presence of the bubbles. We have measured velocity signals obtained from one-point
measurements by hot-film anemometry (HFA). These signals contain two interesting
types of information: the alternation of phases at the measuring point, and the vertical
velocity of the liquid when the tip of the probe is in the liquid. To our knowledge,
these two kinds of signals have not been related often (except in Cartellier & Riviere
2001; Risso & Ellingsen 2002), and the coupling between the HFA velocity signal
and the bubble passage signals has never been studied for void fraction above 2 %.
A schematic record of an HFA signal in the liquid perturbed by passing bubbles is
shown on figure 1. Since we deal with complex bubbly flows at non-negligible void
fraction, with moreover a dispersion of the bubble sizes, we have developed a specific
methodology to reconstruct, from many HFA records, both the statistics of the local
velocity field perturbed by an individual bubble, and the statistics of the interstitial
velocity field.

The introduction of conditional statistics allows us to analyse the perturbation of
the velocity of the liquid in the vicinity of the bubbles and the drift mechanisms.
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Figure 1. Partition of the liquid flow in: (i) a flow generated locally by each bubble, and
(ii) the interstitial flow. We give a schematic correspondence between a velocity record uf (t)
obtained from the HF probe immersed in a swarm and the bubble-induced liquid motions. The
three bubbles crossing the probe along line AA′ induce a strong perturbation in their vicinity.
In order to identify the interstitial region, where hydrodynamic interactions are schematically
shown, the extent of the local perturbation has to be estimated.

The pertinence of conditional averages appears clearly when defining an interstitial
velocity to which a bubble responds, that is, when one is interested in the dynamics
of the relative motion, or wishes to study the displacement of fluid induced by the
relative motion. Kowe et al. (1988) first pointed out that the analysis of bubbly flows
in terms of three velocity fields, respectively representative of the displaced liquid, of
the interstitial liquid and of the bubbles, allows one to model a drift flux based on the
mass conservation equation and to calculate the forces acting on the bubbles. Based
on Darwin’s analysis of the fluid displaced by an isolated sphere in potential flow,
they developed a mechanistic drift flux model for bubbly flows taking into account
added mass. They did not define precisely the interstitial average however.

In a recent study Eames et al. (2004) elaborated a precise concept of interstitial
average. Our discussion of drift flux will thus focus on their analysis which revisited
the concept of Darwin’s inviscid drift and proposed new kinematic concepts which
are useful for the characterization of the mean flow around groups of obstacles (see
also Eames, Belcher & Hunt 1994 for a discussion of Darwin’s drift). At present,
vorticity is not taken into account in drift models predicting the liquid entrainment
by isolated bubbles or in bubbly flows. Despite this shortcoming, irrotational models
of drift provide a framework to analyse the effects of interactions on the modulation
of the drift compared to the drift induced by an isolated bubble.
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The paper is organized as follows. In § 2, the experimental facility and
instrumentation are presented. In § 3, we introduce the various statistics used for
the present analysis, and specifically the conditional time series of the velocity in
the liquid. We describe the signal processing that has been developed in order to
extract the characteristics of the velocity disturbance around each bubble. Then we
explain how we split the liquid phase into a collection of volumes controlled by
the presence of a test bubble, and another volume where the velocity field has lost
the footprint of the bubble passage. Based on such a separation between a near
field, and a far field away from the bubble, we define conditional statistics of the
velocity field within the continuous phase. With these statistical tools we analyse the
liquid flow inside the swarm of bubbles. The experimental results, their discussion
and interpretation are given in § 4. We show that the disturbance of the velocity in
the liquid in the vicinity of the bubbles is strongly attenuated by wake interactions
(§ 4.1). We then point out the differences between the various possible definitions of
the relative velocity, which thus introduce different velocity scales for the relative
movement (§ 4.2). Finally, we discuss how the conditional far-field averaged velocity
can be used to analyse the mechanisms of mean liquid transport. A comparison of
our measurements with existing irrotational drift flux models is discussed (§ 4.3), and
an attempt to take into account the important effect of entrainment by the wakes is
also discussed (§ 4.4).

2. Experimental methodology
2.1. Experimental apparatus and operating conditions

The experimental apparatus consists of a vertical channel in which the bubbly flows
are manipulated at ambient temperature and pressure (figure 2) (for more details see
Larue de Tournemine 2001). The injection device consists of a stagnation tank and a
convergent section, both separated into two parts by a vertical splitter plate of 2.5 mm
thickness. After the splitter plate the two bubbly flows mix in the vertical channel of
3.1 m height and 0.3 × 0.15 m2 cross-sectional area. Both sides of the tank are supplied
independently with water and air. To generate bubbles, in each side of the convergent
section 576 capillary tubes (80 cm long, 0.33 mm/1 mm internal/external diameter) are
uniformly spaced on a grid and are distributed across the whole section of the channel
(0.15 × 0.15 m2 on each side). The tops of the capillary tubes are 2 cm below the top
of the splitter plate. The two capillary tube networks are independently fed with air.
Special care was taken to ensure there was no mean velocity gradient and no void
fraction gradient at the inlet of the measurement channel. The liquid flow rate was
fixed at QL = 20 × 10−3 m3 s−1 for all the experiments, corresponding to a mean flow
velocity of Uf 0 = 0.44 m s−1 in single-phase flow. The gas flow rate was varied from
QG = 1.26 × 10−4 m3 s−1 to QG = 1.8 × 10−3 m3 s−1, enabling the void fraction to be
varied from 0.3 % to 14 %. Optical velocimetry techniques are limited to very low void
fraction flows. For higher void fractions, optical measurements of the velocity field
fail and we thus used hot-film anemometry. This is a reliable measurement technique
if it is used with a non-negligible mean convective flow. On the other hand, in order
to study a bubbly flow where all the fluctuating motions are generated by the relative
motions of the bubbles, we had to inject bubbles in a very weakly turbulent flow with
a turbulent intensity as low as possible. Thus we have chosen, as a compromise, the
above liquid flow rate in order to generate, before bubble injection, a single-phase flow
which is only weakly turbulent (the r.m.s. value of the velocity is u′

f 0 = 8 × 10−3 m s−1).
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Figure 2. Experimental set-up.

This background flow, necessary to have acceptable measurements with a hot film,
also serves to enhance the stability of the overall bubbly flow.

The bubble mean diameter dB and the r.m.s. diameter d ′
B were measured by double

optical fibre probes (OFP) (see § 2.2). There is a limited polydispersion of the bubble
sizes (d ′

B/dB is always lower than 15 %). While the design of the bubble injection
device ensures the temporal stability of the gas flow rate, it was not possible to fix
the mean diameter of the bubbles at a constant value as α increases. Variation of
the gas flow rate generates changes in the mean bubble diameter from 1.14 mm to
2.38 mm (figure 3) because of changes in detachment conditions at the tip of the
capillary tubes. These variations of the bubble diameter with the void fraction mean
that shape changes are expected. As dB increases, the bubbles become more oblate.
The aspect ratio χ defined by χ = a/b, where a is the major axis length of the
oblate bubble, and b its minor axis length, is given in figure 4. The values of χ were
estimated by visual inspection of about 20 bubbles for five different void fractions
between 0.7 % and 5%. A mean diameter was also estimated from photographs
(figure 3). The evolution of the aspect ratio of the bubbles with the void fraction is
consistent with the empirical relation given by Duineveld (1995) for measurements of
low deformable bubbles in water (figure 4). The change in bubble shape alters their
dynamics. For an isolated bubble such a change in diameter and shape would lead to
a modification of the trajectory from rectilinear to zigzag or helical. In our study, as
the void fraction varies, the parameters involved in the liquid transport such as the
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Figure 3. Size of the bubble: �, mean diameter dB ; �, r.m.s. diameter d ′
B ; � · · · �, video

estimation of dB .
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Figure 4. Aspect ratio of the bubbles: �, video estimation of χ; +, χ from Duineveld (1995)
(when dB � 1.8 mm in MKS : χ =
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relative velocity and the added-mass coefficients are therefore not only modified by
the void fraction, but also by the changes of shapes and equivalent diameters.

In our set-up, preliminary experiments on bubbly flows generated by a homogeneous
injection have shown homogeneous distributions of liquid velocity and void fraction
for α � 2 %. For α > 8 %, the void fraction profiles and liquid velocity profiles were
not perfectly uniform, with the void fraction being slightly higher at the centre of the
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measuring section. Measurements were taken at a fixed position (17 cm above the top
of the splitter plate), far enough away from the splitter plate wake and the tank walls.
In the vicinity of the measuring point, the flow is locally quasi-homogeneous because
the spatial variations in the velocity field and void fraction occur over a larger scale.
The results are reproducible, which was confirmed by considering other points farther
from the splitter plate. This shows that the results are not affected by non-perfectly
homogeneous experimental conditions.

2.2. Measuring methods

A calibrated hot-film anemometer (HFA) was used to measure the velocity of the
liquid phase. The HFA was composed of a single cylindrical hot-film probe (Dantec,
55R11) and a constant-temperature anemometer (Dantec, Streamline 90N10). The
overheat ratio was fixed at a low value (6 %) to avoid bubble formation on the
hot-film element by gas dissolution. The temperature of the water was maintained
constant during the experiments because of the large thermal capacity of the tank
from which water was pumped. The sampling frequency was chosen equal to 5 kHz,
and measurements were recorded for at least 100 s. The accuracy of the liquid velocity
was estimated by repeating the measurements and examining data scattering. The
relative error is always lower than 5 %. The diameter and length of the sensitive
element of the probe (70 µm, 1.25 mm), associated with the non-negligible mean liquid
velocity, allowed correct piercing of the bubbles, so that interactions between the
probe and the bubbles were negligible (Bruun 1995; Serizawa, Tsuda & Michiyoshi
1983). The passing of a bubble over the film causes a sudden change in heat transfer,
so that the associated portion of the signal has no meaning and must be removed
from the signal (figure 5a). We used a phase discrimination algorithm described by
Farrar et al. (1995) to separate the parts of the HFA signal related to the bubble
passages. The algorithm is briefly discussed in the caption of figure 5 (for more details
see Larue de Tournemine 2001). A comparison between simultaneous measurements
of the liquid velocity using both a laser and a HFA at the same point confirms that
both systems give the same velocity time series in the vicinity of a bubble passage,
and that only the abrupt negative fall which characterizes the bubble presence on the
film must be removed (Ellingsen et al. 1997).

An optical fibre probe was used to measure the void fraction. The fast response
time of the probe (2 µs) allows the presence of the gas phase to be determined using
a simple threshold method. A double optical fibre probe, consisting of elements
separated by a vertical distance of 3.1 mm, was used to measure the bubble velocities,
and their sizes (see Serizawa, Kataoka & Michiyoshi 1975, Clark & Turton 1988,
Roig 1993 and Kamp 1996 for a description of the signal processing algorithms). The
relative errors for the mean diameter of the bubbles and for the mean vertical velocity
were estimated to be less than 6 %.

3. Time series analysis
3.1. Definition of averaged velocities in both phases

The time series of the velocity u(t) at a fixed point is equal to the velocity of the
fluid uf (t) when the probe is in the continuous fluid phase. In a time series of
duration T , we denote respectively tAi and tDi as the times of arrival and departure
of bubble i detected on the HFA signal (figure 5b). Using the Heaviside function
H (t) we define the elementary characteristic function for the presence of the fluid:
gi(t) = H (t−tDi)−H (t−tAi+1) which is zero except for tDi � t � tAi+1. The characteristic
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Figure 5. Typical signal obtained from hot-film anemometry: (a) record at α = 8 %; (b) visual-
ization of the three points (A, B, C) used for phase discrimination. Phase discrimination consists
of identifying, from examination of the slope of the signal, the points A, B and C due to the
bubble passage on the hot film. Point A is the front interface of the bubble, B is the rear
interface. [BC] is the response of the anemometer to the rapid variation of thermal conditions
associated with the dynamics of the liquid meniscus between the sensor and the bubble during
the rear interface passage. While [BC] does not represent the continuous-phase velocity, the
decrease after point C is representative of the liquid movement near the bubble. Thus, there is
an undetectable liquid region in the very near field of any interface, but the extent of this field
is negligible. (c) visualization of the reference times (tAi and tDi) used for conditional averages.

function of the fluid phase is χf (t) =
∑N

i=1 gi(t), N being the number of bubbles
which have passed in time T . We thus define the velocity in the liquid phase by
uf (t) = u(t)χf (t).

The unconditionally averaged velocity in the liquid phase is then classically given
by averaging over the whole record in the liquid phase

Uf =

∫ T

0

uf (t) dt

∫ T

0

χf (t) dt

. (3.1)

The mean velocity of the bubbles VB has been defined as the statistical average of
the velocities of the bubbles, with vBi the velocity of bubble i,

VB =
1

N

N∑
i=1

vBi. (3.2)
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The averaged velocity in the gas phase taking into account the residence time �tBi

of the bubbles, is defined as

UG =
1∑

i

�tBi

∑
i

�tBivBi. (3.3)

The unconditionally averaged velocities in both phases, Uf and UG, are used in most
of the modelling approachs (Drew 1983; Biesheuvel & van Wijngaarden 1984).

3.2. Conditionally averaged velocities

The two types of information contained in the HFA signal – the vertical velocity of
the liquid and the times of arrival/departure of the bubbles (figure 5a) – are used to
define a measurement of the averaged vertical disturbance around a test bubble. We
then introduce Eulerian conditional statistics for the vertical velocity field far away
from any bubble.

3.2.1. Conditional time series of the velocity in the liquid

The averaged form of the vertical velocity field in the liquid phase in the
neighbourhood of a bubble in the swarm is calculated from the following conditional
time series. For the fluid velocity downstream of the bubbles we calculate

〈u(τ )〉d =

N∑
i=1

uf (tDi + τ )gi(tDi + τ )

N∑
i=1

gi(tDi + τ )

(3.4)

which is defined for 0 � τ � maxi(tAi+1 − tDi), where τ � 0 is the time from the
passage of the rear interface. In the same way, for the fluid upstream of the bubbles
(for mini(tDi−1 − tAi) � τ � 0, where τ � 0 is the time before the bubble arrives), we
introduce the conditionally averaged time series

〈u(τ )〉u =

N∑
i=1

uf (tAi + τ )gi−1(tAi + τ )

N∑
i=1

gi−1(tAi + τ )

. (3.5)

A schematic illustration of the method of calculating the conditionally averaged time
series 〈u(τ )〉 is given in figure 6 (where 〈u(τ )〉 stands for 〈u(τ )〉d or 〈u(τ )〉u). In the
following, we will call the above definitions unfiltered conditionally averaged time
series, because they include, through gi(t), disturbances due to neighbouring bubbles,
which will be found to be important later.

We performed an Eulerian measurement at a fixed point of the time series 〈u(τ )〉
of the disturbance of the liquid velocity due to the relative motion of the bubbles. To
convert, in the vicinity of the bubbles, temporal information on the vertical velocity
field into spatial information, we have applied a Taylor hypothesis (Hinze 1987),
using the bubble mean rise velocity VB . The disturbance in the vicinity of the bubble
being closely controlled by the boundary condition at its surface, we have assumed
that the disturbance is transported at the velocity of the bubbles as in Cartellier &
Riviere (2001). Strictly speaking, this hypothesis is valid if VB � (VB − Uf ), which is
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Figure 6. Calculation of the conditional time series. Some instantaneous records of the
velocity in the liquid phase around bubbles are plotted. 0 corresponds to the bubble passage.
For the unfiltered conditional average, plotted in bold, the average is taken over all the records
around the bubbles including the parts of the signals (pointed out by arrows) associated with
the influence of the neighbouring bubbles; this average thus results in a difference between
the velocities at infinity denoted δU∞. We next introduce the filtered conditional average, not
plotted here, for which the parts of the signals associated with the influence of the neighbouring
bubbles are not taken into account, and δU∞ then tends towards 0.

reasonably well satisfied in the present measurements (0.2 � (VB − Uf )/VB � 0.3). In
such conditions, the time record of the disturbance at a fixed point is equivalent to
the time record of a ‘frozen’ spatial disturbance crossing the point of measurement at
velocity VB , and the time-to-space transformation is possible.

A characteristic of one-point measurements is that the averages are not spatial
averages over the whole domain around a bubble, but are conditioned on the
detection of the interface by the hot-film sensor (see figure 1). Our conditional
averaging procedure averages all the contributions of the bubbles crossing the point of
measurement, whatever the positions of their centres relative to the probe, and for all
velocities and orientations of the oblate bubbles with respect to the vertical direction.
The strength of the disturbance produced by a bubble passage and the preferential
orientation of the trajectories towards the vertical direction are nevertheless strong
enough for a statistically meaningful average to arise. We can consider that we measure
a spatial conditional average over an approximate vertical cylinder of ellipsoidal cross-
section intersecting the test bubble.

The unfiltered conditional averages of the vertical velocity 〈u(τ )〉 are reported for
different void fractions in figure 7. Up to α = 0.13, the vertical velocity field induced by
bubble passages has a well-defined averaged form revealing the local flow induced by
bubbles. An important feature of our experimental conditional average is that to each
side of the bubble, far away from the bubble interfaces, it reaches an asymptotic value,
independent of the distance from the bubble. This far field is, thus, not controlled by
the action of the test bubble.
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Figure 7. Unfiltered phase average of the liquid velocity around the bubbles. Time τ = 0
corresponds to the interface passages, τ < 0 to the region upstream of the bubbles, τ > 0 to
the downstream region of the bubbles. All runs for 0.3 % � α � 13 %. When α increases the
curves are displaced to higher values.

However, it is important to notice that changes in the void fraction modify the
values of the asymptotic far field of the unfiltered conditionally averaged time series
(figure 7). The first effect of increasing the void fraction is to increase 〈u(τ )〉. This
global displacement is consistent with the increase of void fraction for a constant
liquid flow rate. A more subtle effect of increasing the void fraction is related
to the appearance of an asymmetry of the flow far from the interfaces. For low
values of α, both upstream and downstream conditionally averaged perturbations
relax asymptotically towards the same values at infinity on each side of the bubble.
But for α > 2 % we obtain 〈u(τ → +∞)〉d 	= 〈u(τ → −∞)〉u. This is because the
calculation of the unfiltered conditionally averaged fields around a bubble also
includes the disturbance motion of that bubble as well as the influence of the velocity
perturbations of the surrounding bubbles (figure 6). Because a wake develops at the
rear of a bubble, the upstream average is systematically higher than the downstream
average. At this step of the conditional average process, the estimated far field is thus
not representative of a field far away from any bubble. The second effect associated
with void fraction variation consists of a modification of the time and spatial scales
necessary to recover the asymptotic external velocity values on each side of the bubble.
A discussion of the underlying physics is given in § 4.1.

While the primary unfiltered conditional average of the time series 〈u(τ )〉 represents
the mean flow around a bubble in a swarm, it is more relevant to define another
conditional average that filters the direct influence of the neighbouring bubbles. This
will allow a discussion of the differences between a region near any individual bubble
in the suspension, which is mainly controlled by the boundary condition at this
interface, and an external far field only influenced by the hydrodynamic interactions.

To calculate this new conditional average, denoted filtered, we use the time scales τrd

and τru of the perturbations obtained by fitting of the primary unfiltered conditional
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averages by an exponential law (see § 4.1 for a physical justification of this fitting
law and for a precise definition of τrd and τru). To eliminate the direct influence of
the neighbouring bubbles on the conditional time series we thus define the following
elementary characteristic functions for the fluid in the vicinity of a bubble:

g̃d,i(t) = H (t − tDi) − H (t − tAi+1 + τru)

which is zero except for tDi � t � (tAi+1 − τru), and similarly

g̃u,i(t) = H (t − tDi−1 − τrd) − H (t − tAi).

For the fluid velocity in the vicinity of the bubbles we thus calculate the filtered
conditionally averaged time series

〈ũ(τ )〉d =

N∑
i=1

uf (tDi + τ )g̃d,i(tDi + τ )

N∑
i=1

g̃d,i(tDi + τ )

(3.6)

which is defined for 0 � τ � maxi(tAi+1−τru−tDi); and in the same way, for mini(tDi−1+
τrd − tAi) � τ � 0,

〈ũ(τ )〉u =

N∑
i=1

uf (tAi + τ )g̃u,i(tAi + τ )

N∑
i=1

g̃u,i(tAi + τ )

. (3.7)

The global shape of the filtered conditionally averaged time series (denoted 〈ũ(τ )〉
for both positive and negative values of τ ) is not very different from the unfiltered
ones, neither are their associated relaxation times (figure 8). But the values at infinity
on both sides of the bubble are now identical. This proves that excluding near fields
from conditional calculations leads to a well-defined unique behaviour at infinity. The
small differences between filtered and unfiltered averages, except at infinity, can be
related to the exclusion effect in the wakes of the bubbles, which will be discussed
later, and to the shortness of the upstream disturbance.

We can finally conclude that, even if the void fraction is not negligible, the values
of the relaxation lengths that we can calculate from the filtered conditional average
procedure are representative of the size of a local perturbation controlled by the
motion of an individual bubble. And that outside of this zone, we can measure a
velocity field that is independent of this perturbation and results from the collective
interactions in the suspension.

3.2.2. Definition of conditional averages

Because upstream and downstream conditionally averaged perturbations relax
towards the same values at infinity, we can define clearly a unique asymptotic far
field, and introduce conditional statistics in the region far away from the bubbles.

We define the elementary characteristic function for the fluid far away from any
bubble as

gFF,i(t) = H (t − tDi − τcut,d) − H (t − tAi+1 + τcut,u).

The values of τcut,d and τcut,u fix the size of an exclusion zone around the bubbles and
are related to τrd and τru. Function gFF,i(t) exists only if (tDi + τcut,d) < (tAi+1 − τcut,u).



Interstitial velocity of homogeneous bubbly flows 99

–5 0 5 10
–0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

τVB /dB

[�
u(

τ)
�

 –
 �

u(
±∞

)�
]

—
—

—
—

—
—

—
—

–
[�

u(
0
)�

d 
– 

�
u(

±∞
)�

]

Figure 8. Filtered phase average of the liquid velocity around the bubble (dotted line:
minimum void fraction; bold line: maximum void fraction). All runs for α � 13 %. When
α increases, the rear perturbations (τ > 0) attenuate faster.

The characteristic function of the fluid phase in the far field of any bubble is

χFF (t) =

N∑
i=1

gFF,i(t).

The velocity of the liquid in the far field of any bubble is thus uFF (t) = u(t)χFF (t).
The conditionally averaged velocity of the fluid in the far field is then

UFF =

∫ T

0

uFF (t) dt

∫ T

0

χFF (t) dt

. (3.8)

In the following, we present arguments supporting the ability of our methodology
to provide a well-defined conditional measurement of the velocity in the far field of
any bubble present in a swarm at moderate α. We also discuss the limits in the void
fraction range for such a methodology to apply.

In order to measure the far field statistics, τcut,d and τcut,u must be carefully chosen.
Their values have been selected in a range so that the conditional statistics in the
far field are not dependent on the choice of τcut,d and τcut,u. The value of UFF is
not sensitive to the choice of these relaxation times if they are long enough to allow
removal of the most important part of the bubble-induced disturbance (Larue de
Tournemine 2001). (They are defined more precisely from (4.2) with β taken equal to
βd = 10−4 and βu = 5 × 10−4 respectively).

It is also crucial to assess whether UFF obtained from one-point measurements is
representative of the liquid velocity averaged over all the interstitial far-field volume
around the bubbles, and not only in the interstitial volume. The probability of
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considering as a far-field event a near-field event associated with a bubble passing
in the vicinity of the point of measurement, but that would not have been detected
by the probe, is low (proportional to α2 (Batchelor 1972)). Thus, our method of
distinguishing between near field and far field from a one-point measurement is valid
at low to moderate void fraction. Moreover, even if the measurement of the far field
subjected to the conditional presence of a bubble is taken just in a vertical direction,
it is nevertheless representative of an average over the whole interstitial space around
the bubble. This is because the average is taken in a region where the positions of
the bubbles are quite random. The distribution of the bubbles is not strictly speaking
random, but there is no long-range order. Indeed, we have estimated, from optical
fibre probe signals, the pair-probability density P (r) for finding two bubbles separated
by a distance r in the vertical direction. A local deficit of P (r) to the rear of the test
bubble was observed for small r . It is due to hydrodynamic interactions (see Koch
1993 and Cartellier & Riviere 2001 for lower values of Re and α than in the present
study). Nevertheless, at large distances, that is in the region where far-field statistics
are evaluated, we found that the positions of the bubbles are statistically independent.

In order to measure the far-field statistics, with this methodology one needs to
retain some parts of the signal after the filtering of the near-field perturbations. The
spatial extent along the measuring direction of this near field including the bubble is
VB(τcut,d+τcut,u)+dB . The mean vertical separation between two bubbles intercepted by
the probe is λ12)v = 2db/3α. We can thus measure UFF when VB(τcut,d+τcut,u)+dB < λ12)v .
Based on our particular choices of τcut,d and τcut,u, this condition is satisfied up to a
void fraction of about 10 %.

4. Experimental results and discussion
4.1. Characteristic length scales of the flow around a bubble

In a bubble swarm, Risso & Ellingsen (2002) showed that, up to a void fraction of
1%, the velocity of the liquid in the region close to the bubble is similar to the one
observed for an isolated bubble (at distances less than 2.5dB): it is potential at the
front of the bubble and controlled by the wake at the back. They have also shown
experimentally that, at low void fraction, the hydrodynamic interactions make the
liquid velocity decrease faster downstream of a bubble in a suspension than in the
wake of an isolated bubble. In the present work, these results are extended up to
α = 13 %.

Some general features of the velocity perturbation around the bubbles can be
observed for all void fractions. One observes an asymmetry between the flow upstream
and downstream of the bubble resulting in different values of the interface velocities
and of the relaxation lengths (figure 8). The mean velocities at the interfaces on each
side differ from the bubble velocity. This is a result of the averaging process that
cumulates interfacial velocities sampled over all the front (or rear) surface intercepted
by the probe. The vertical velocity being non-uniform along the bubble interface, the
averaged velocities 〈ũ(τ = 0)〉u and 〈ũ(τ = 0)〉d differ from the bubble velocity. For an
isolated ellipsoidal bubble at high Reynolds number a potential velocity field develops
at the front the bubble and a wake behind. And in the vicinity of the interface, the
vertical velocity along the curvature decreases faster on the potential flow side than on
the wake side, as predicted by axisymmetric direct numerical simulations (Ellingsen
1998). This is expected to be also the case close to the interface of a bubble in a
swarm. Because the probability of piercing by the probe increases with the distance r

from the stagnation point, 〈ũ(τ = 0)〉u is smaller than 〈ũ(τ =0)〉d . In all of our runs,
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Figure 9. Non-dimensional length scales characteristic of the decay of the velocity around a
bubble in the swarm: �, length of downstream perturbation (measurements) λ∗
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the characteristic length scale over which the velocity decays downstream of each
bubble is much larger than upstream due to the presence of a wake.

Our experimental measurements also show that the velocity perturbation in the
wake decays faster in the swarm than for an isolated bubble. This effect is stronger
when α increases (figure 8). For all the void fractions, the experimental filtered
averaged time series (upstream and downstream) are very well fitted by an exponential
law of the form

〈ũ(τ )〉 = U1exp(−|τ |/τ2) + 〈ũ(τ → ±∞)〉 (4.1)

where U1 and τ2 are obtained from the fit as functions of α.
The fitted exponential laws enable us to define relaxation times τr (τrd for the

downstream average and τru for the upstream average respectively) as the times
required to satisfy

〈ũ(τr )〉 − 〈ũ(τ → ±∞)〉
VB − 〈ũ(τ → ±∞)〉

= β = 0.05. (4.2)

The associated relaxation length in the wake λrd = τrdVB is plotted on figure 9 in
non-dimensional form. We thus give evidence of the reduction of the length of the
wakes when α increases up to moderate void fractions of about 13 %. At low void
fraction, the order of magnitude of λ∗

rd = τrdVB/dB is in agreement with the estimation
of the distance necessary to reach an external asymptotic field far away from the
bubble made by Risso & Ellingsen (2002) (typically 5dB). We are thus confident
in the ability of our methodology to characterize the extent of the perturbation
induced in the liquid by bubbles passages. The relaxation length in the upstream
region λru = τruVB is also reported on figure 9. This length scale is lower than the
wake length and is insensitive to void fraction effects. For any void fraction, the
measured value of λru has the same order of magnitude as the one we can estimate
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from a conditional average of the analytical axisymmetric irrotational flow around an
isolated bubble of equivalent diameter. Taking the average over the vertical cylinder
intercepting the bubble the predicted value of λru is 0.75dB , in agreement with the
measurements. We thus have an experimental observation of the persistence of the
blocking potential flow upstream of a bubble in a swarm.

In the general case, the faster decay rate of the conditionally averaged velocity
disturbance in the wake of a bubble in a swarm, compared to an isolated bubble,
may result from different screening mechanisms. Among them, as shown by Koch
(1993), is that the wake may be modified by the buoyancy due to non-uniform
bubble number density and also, whatever the statistical distribution of the bubbles,
by the unsteadiness and Reynolds stresses induced by the surrounding bubbles. Two
important elementary possible mechanisms have been identified for the surrounding
bubbles to distort the velocity field and lead to a rapid disappearance of the wakes
at high Reynolds number: external straining exerted on the wake due to the blocking
by neighbouring bodies (Hunt & Eames 2002), and wake intermingling between nei-
ghbours (White & Nepf 2003; Eames et al. 2004), the second mechanism dominating.

In our experimental study, the flow is very complex, due to non-negligible void
fraction, three-dimensional free motions of the bubbles, and an inertial regime. We
observed at the micro-scale an exclusion zone at the rear of the bubbles, but the
spatial extent of this zone λex does not scale as predicted by the model of Koch (1993)
(we observed with an optical fibre probe λex ≈ 0.9dBα−0.4). However, our void fraction
and Reynolds number values are too high to allow a successful detailed comparison
with this model as they induce a strong modification of the initial laminar Oseen wake
assumed in the model. In our flow, like in Koch (1993), lift forces may contribute to
a screening effect by rejecting the bubbles outside the wake of the test bubble, but
neighbouring bubbles may also disturb the wake directly, even in the near region,
due to the mechanism of wake intermingling. In the following we discuss how, due
to the latter mechanism, a screening effect may be observed. We assume a uniform
distribution of the bubbles, and discard, due to its complexity, the more realistic
problem that requires the coupled resolution of the spatial distribution of the bubbles
and of the modification of the test-bubble wake. We examine how the conditionally
averaged time series in the wake can be related approximately to an exponential
law. We also discuss the origin of an approximate exponential form for 〈ũ(τ )〉u in
the potential part of the flow. We then compare typical length scales of the wakes
measured in the experiments with the values predicted by a model taking into account
wake interactions.

In a dilute random assemblage of particles embedded in a uniform flow, the
conditionally averaged velocity field around a test particle may be seen as governed
by a momentum equation with a distributed sink term associated with the uniformly
smeared contributions of the localized forces exerted by the other particles (Koch &
Brady 1985). Taking into account only the drag force for the sink term, and assuming
that the far wake still has a thin structure, one can solve the momentum equation
after linearization of the inertial term. Such an analysis reproduces the effects of wake
intermingling as in White & Nepf (2003). But of course it does not represent the
coupled problem of free particles moving in a field of intermingling wakes. We have
applied this schematic analysis to a random array of spheres, and we have estimated
the velocity disturbance uw of the axisymetric wake of a bubble in the array:

uw(x, r)

UR

=
Ret

32
CD

dB

x
exp

(
−Ret

4

r2

xdB

)
exp

(
−3

2

αCD

dB

x

)
(4.3)
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where r and x are the radial and longitudinal coordinates, CD is the drag coefficient,
UR the relative velocity and Ret the effective or turbulent Reynolds number in the
wake, defined as URdB/(ν + νt ), where νt takes into account turbulence effects in the
wake. One can recognize in this solution the combination of the solution for an
axisymmetric wake of an isolated body (Batchelor 1967) and a second exponential
function that includes the attenuation due to the drag array. Thus the perturbation
in the wake of a bubble in a swarm may decay rapidly due to wake interactions.

The conditional average given by this model thus can be written

〈uw(x)〉
UR

=
4

πd2
B

∫ dB/2

0

2πr
uw

UR

dr =
CD

2

(
1 − exp

(
−Ret

16

dB

x

))
exp

(
−3

2

αCD

dB

x

)
.

(4.4)

The upper limit of integration is defined in order to compare to the experimental
average related to the detection of the bubble by a probe. This calculation shows
that close to the bubble an exponential approximation is expected for 〈uw(x)〉. An
exponential decay of the experimental downstream averaged velocity 〈ũ(τ )〉d is thus
predicted in the vicinity of a bubble due to the influence of the neighbouring bubbles
on the wake of the test bubble.

We now present a comparison of our measurements with the prediction of a
length scale LCD

characteristic of the decay described by (4.4). We define LCD
such

that 〈uw(LCD
)〉/UR = 0.05. Assuming an equilibrium between the drag force and the

buoyancy, we can estimate approximately CD = 4
3
gdB/U 2

R , where g is the acceleration
due to gravity. For quite low values of Ret (10 to 20), there is a reasonable agreement
between the orders of magnitude of λrd and of the predicted value LCD

(figure 9).
A better agreement seems difficult to achieve because of the singular behaviour of
the wakes that have finite sizes at x = 0. From the reasonable agreement between the
experiments and the model we can infer that multi-body interactions are involved in
the wake annihilation in the swarm. Nevertheless, the transverse oscillatory motions
induced by the surrounding bubbles may also contribute to the rapid destruction of
the wake (Risso & Legendre 2003). The presence of oscillatory motions could explain
why low values of Ret are needed in the model to recover the experimental results.

In the experiments, an exponential decay is also observed in the upstream potential
part of the flow. In the conditional averaging process, the random instantaneous
trajectories induce random positions of the piercing relative to the positions of the
centre of the bubbles, and a random angle between their velocity and the direction
of measurement. Moreover, the bubble diameter is not unique as it varies around
its mean value, and is a supplementary random variable. The statistical distribution
of arrivals of the bubbles, and the fact that the conditional average process mixes
the different effects of the various random mechanisms may explain the upstream
exponential form, otherwise unexplained. This idea was tested by calculating the global
conditional average of the analytic solution of the vertical velocity in a potential flow
around a spherical bubble. We have tested first a uniform probability of piercing, and
secondly a probability given by the eccentricity of the probe relative to the bubble
centre, discarding in this case the extreme eccentricity. These calculations gave a
conditionally averaged series that was approximately exponential near the bubbles,
but that reverted to an algebraic decay far upstream.

4.2. Mean velocities and relative velocity

In this section we briefly discuss the physical meanings and the links between the
various definitions of the averaged velocities. These definitions are recalled in table 1.
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Notation Definition Significance

Uf (3.1) averaged velocity of the liquid phase
VB (3.2) statistical mean velocity of the bubbles
UG (3.3) averaged velocity of the gas phase

〈u(τ )〉d and 〈u(τ )〉u (3.4) and (3.5) unfiltered conditionally averaged time series
of the velocity in the liquid

〈ũ(τ )〉d and 〈ũ(τ )〉u (3.6) and (3.7) filtered conditionally averaged time
series of the velocity in the liquid

UFF (3.8) conditional average of the velocity of the
liquid in the far field

Table 1. Definitions of velocity averages
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Figure 10. Mean velocities of the liquid phase obtained from conditional and non-conditional
averages. �, Uf phase average; �, UFF conditional average in the far-field; �, single-phase
flow.

In our experiments the absolute velocity of the bubbles is quite insensitive to the
void fraction (with data scattering it ranges between 0.6 and 0.64 m s−1).

The mean velocity of the liquid Uf increases with the void fraction (figure 10). This
is due to the experimental procedure used to vary the void fraction between each run.
For a given liquid flow rate, adding a gas flow rate generates an increase in the liquid
velocity simply to satisfy mass conservation. At the point of measurement, due to the
non-uniformity of the flow associated with the boundary layer development, we could
not obtain a perfectly constant local superficial velocity U = (1 − α)Uf . We thus do

not satisfy exactly in a local sense the simple mass balance Uf = Uf 0/(1 − α) with Uf 0

a constant velocity equal to the velocity in single-phase flow. But this relation mostly
explains the dependence of Uf upon α.

The conditional averages defined in the far field, UFF , also evolve with α because
they are also sensitive to the global velocity enhancement due to gas injection
(figure 10). At low void fraction, UFF is very close to Uf , because, due to the small
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Figure 11. Relative velocities of the bubbles: �, URFF ; �, URL; (large symbols: x = 17 cm,
y =8 cm; small symbols: x =60 cm, y = 5 cm); �, terminal velocity from Clift et al. (1978) in
ms−1: UR∞ = (2.14σ/ρLdB + 0.505gdB )0.5, for deformed bubbles with dB > 1.3 mm.

number of bubbles by unit volume, the near field fraction is negligible. For void
fractions higher than 10 % there are essentially bubble-induced local perturbations
and the liquid is mainly contained in a very thin region between neighbouring bubbles.
Such interstitial regions can no longer be considered as far away from any bubble.
Thus, for high void fractions, a conditional near-field average as well as Uf are the

pertinent velocity scales. It remains that, for intermediate void fractions, UFF still
signifies of a large number of statistical events in the liquid. In bubbly flows at
moderate void fraction, both velocities Uf and UFF may thus be useful in discussing
and scaling the results.

The relative velocity of the bubbles being at the origin of any motion induced in
the liquid, it is fundamental to define it precisely and to examine its dependence upon
the flow conditions. Two definitions of the mean relative velocity can be introduced.
The first is linked to phase averages, URL = UG−Uf , and the second is URFF = VB−UFF .
Our experimental results show that the difference between URL and URFF is noticeable
(figure 11). Due to the effect of fluid displacement in the vicinity of the bubbles, URL

is always lower than URFF . Above α = 5 % or 6 %, their difference is at least equal to
30 %. It is thus important to distinguish between these definitions. While URL is com-
monly used, URFF is a definition that better scales the individual relative movement
as can be seen on figure 8 where (〈ũ(τ → 0)〉d − UFF ) is nearly equal to URFF . Both
relative velocities URL and URFF are very different from the terminal velocities UR∞
of bubbles of equivalent diameters (given for example by Clift, Grace & Weber 1978)
(figure 11). At very low void fraction we measured a noticeable difference with UR∞,
which has never been explained to our knowledge, but has also been observed by van
Wijngaarden & Kapteyn (1990) and by Zenit et al. (2001). Then both relative velocities
URL and URFF decrease when the void fraction increases as already observed in several
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experiments (van Wijngaarden & Kapteyn 1990; Zenit et al. 2001; Garnier et al. 2002;
among others). Such a reduction of the relative movement is due to bubble interac-
tions, occurring for all the particle Reynolds number, but depending on this Reynolds
number (Spelt & Sangani 1998; Esmaeeli & Tryggvason 1998, 1999; Legendre et al.
2003). The dependence of URFF upon the void fraction is different from that of URL.
It reveals that the investigation of a scaling of the relative movement versus the void
fraction needs primarily to be based on a precise definition of the relative velocity. In
this work we did not attempt to determine such a scaling because the shapes and ter-
minal velocities varied in too large a range and were not determined precisely enough.

4.3. Comparison of interstitial velocity between bubbles with potential flow models

The definition of our far-field conditional average based on signal-processing recovers
characteristics similar to the interstitial mean velocity defined by Eames et al. (2004)
who have proposed new concepts useful for the calculation of the averaged flow
created by a bubble swarm. They described the averaged collective effect of the
bubbles that modifies the mean liquid flow of a homogeneous flow in the potential
approximation. While they defined the Eulerian mean velocity Uf as an average over
the volume occupied by the fluid in the control volume, the interstitial Eulerian mean
velocity (denoted UI

E in their work) was defined as an average over the total volume
occupied by the bubbly region of an asymptotic form of the potential flow. This
potential flow is valid in the swarm in the region far from any body. Its definition
thus requires a separation of the length scales between the velocity field local to
each body and the velocity field far from each body and is thus limited to dilute
suspensions. The asymptotic velocity potential associated with each body is thus
modelled as a dipole contribution with a dipole moment equal to the moment of an
isolated body in a purely potential flow, 4πµi = − (1+CM )(VB − UI

E)Vb (Taylor 1928)
(where CM is the added-mass coefficient of the bubbles, VB the velocity of the body
and Vb the volume of the body). The total asymptotic velocity potential is the sum of
all the dipola. Eames et al. (2004) have also pointed out a noticeable modification of
the flow due to kinematic boundary conditions related to the continuous injection of
a dispersed phase at the entrance of a channel.

They have demonstrated that the local superficial velocity U of the liquid is related
to the interstitial velocity UI

E through the following relation where we have replaced
UI

E by UFF because both are identically defined far away from any bubble, at least
at low void fraction:

UFF = U − αCM (VB − UFF ). (4.5)

For bounded channel flows, the local superficial velocity of the liquid U can
be calculated from the measured Eulerian mean velocity Uf because the mass
conservation gives U = (1 − α)Uf . The added-mass coefficient of the bubbles is
estimated for an oblate ellipsoidal bubble in potential flow to be ( Lamb 1932):

CM = α0/(2 − α0) (4.6)

with

α0 =
2

e2

[
1 −

√
1 − e2

e
arcsin(e)

]
and e =

√
χ2 − 1

χ
.

We used this relation in combination with the aspect ratio χ given by Duineveld
(1995) to estimate the added-mass coefficient of the bubbles.

Figure 12 shows the experimental measurements of (U − UFF )/(VB − UFF ) as a
function of α. According to (4.5) it should evolve as αCM . Experimental results
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Figure 12. Comparison between drift models and experimental results. Experimental results:
�, x = 17 cm, y = 8 cm, Uf 0 = 0.44 m s−1; �, x = 60 cm, y = 5 cm, Uf 0 = 0.44 m s−1; �, x = 60 cm,

y =5 cm, Uf 0 = 0.3 m s−1. Models: continuous line: model of Eames et al. (2004) with CM (dB )
given by (4.6) and χ given by Duineveld (1995); dotted line: wake modification added to the
model of Eames et al. (2004) (4.7).

are reported for various locations of the measurement point (x = 17 to 60 cm). The
experimental curve is insensitive to the location of the measuring region, showing
that the degree of homogeneity of the flow is sufficient for comparison with the
model. Experimental results are also insensitive to the different values of the mean
liquid velocity range explored (0.3 − 0.44 m s−1). For low void fraction (α < 2 %), the
experimental conditions correspond quite closely to the assumptions of the potential
flow models: the bubbles are nearly spherical, the Reynolds number is high enough,
and the deviation of their motion from rectilinear and stationary path is not important.
Moreover, there is a clear separation between the extent of the near field and the extent
of the far field. Therefore, even if in our experiments the flow around the bubble is not
potential, the approximation of a potential flow around spheres moving at a constant
uniform velocity is nearly sufficient to describe the average interstitial field. The
potential model gives an interesting insight, because close to the bubble the kinematic
effect of the bubble (i.e. the flow around it) dominates the flow pattern (even if it has
an attached wake). It is only one or two diameters downstream that the shed vorticity
becomes important. Thus the local flux is dominated by a potential flow description.
The agreement with (4.5) is noteworthy. It shows that, at low enough void fraction,
in agreement with the experiments, U is higher than UFF . The experimental results
deviate from the potential model of Eames et al. (2004) (equation (4.5)) for α � 2 %.
The deviation is linked to effects not taken into account in the model, such as the
presence of vorticity, the unsteady motions of the bubbles, and a more approximate
separation between the near field and the far field for moderate void fraction. The
importance of vorticity becomes more crucial with increasing void fraction, even at
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large distances from the bubbles, and the potential flow approximation is less and
less valid. This is explored in the next section.

4.4. Discussion of wakes effects

To account for the influence of the vorticity shed by the bubbles on the interstitial
flow, it would be necessary to extend the model of Eames et al. (2004). This is beyond
the scope of the present study. But we can analyse qualitatively the importance of
the transport of liquid by the wakes.

To understand the deviation between the experimental results and the predictions of
the model, the differences between the concept of interstitial velocity in the potential
flow model and our definition of UFF must be analysed in detail, since at high α

the distinction between a near and a far field is blurred. The model requires a strict
separation between the scales of the bubble diameter and of the mean distance between
two bubbles. When the void fraction increases, but remains moderate (α < 8 %), an
asymptotic experimental far field still exists as shown in § 3.2.2. Nevertheless its
spatial extent is reduced, and for α ≈ 8 % the mean distance between two bubbles
and the length of attenuation of the wake become comparable, so that there is
no longer a separation of lengths. The concept of interstitial velocity introduced by
Eames et al. (2004) and our definition of a far field thus diverge more and more as the
void fraction increases. In the range of moderate void fraction (typically between 2 %
and 8 %) where it is possible to distinguish in the experiments between the near
field and the far field, the vorticity shed by the wakes contaminates the far field. A
potential approximation for the far field is therefore no longer sufficient. Some fluid
in the interstitial zone is transported in the wakes, generating an additional upward
contribution to the measurement of the far-field velocity UFF which increases the
right-hand side of (4.5). We can give a qualitative estimation of the finite volume flux
of liquid transported upwards by the wakes:

UFF ≈ U − αCM (VB − UFF ) − α

Vb

F (α)

∫ +∞

0

Q(x) dx (4.7)

where Vb is the bubble volume, Q(x) is the volume flux in a wake and F (α) the fraction
of the interstitial volume occupied by wakes. From the experimental observation of
an exponential form for the conditional average, we assume that the volume flux in
the wake evolves similarly leading to Q(x) = Q0exp(−x/VBτ2). The volume flux Q0 is
estimated from a balance between the drag force D and the momentum defect in the
wake ρQ0(VB − UFF ) = D (Betz 1927), and a balance between the drag force and the
buoyancy (D = g(ρL − ρG)πd3

B/6). For low void fraction, F (α) → 0 and the potential
model of Eames et al. (2004) is recovered (equation (4.5)). For high void fractions
F (α) increases towards unity and the second term in (equation 4.7) will grow so as to
compensate the downward interstitial flow due to inviscid blocking. It is interesting to
notice that (equation 4.7) may reproduce the change of sign of (U − UFF )/(VB − UFF )
when α increases, as observed in the experiments. We have reported the comparison
for F (α) = 1 in figure 12. The qualitative agreement of the experimental results with
this crude model enhances the importance of the transport of liquid due to the wakes
in this configuration.

5. Conclusion
We have developed a method for analysing and interpreting the conditional

statistics of the velocity in the liquid phase of a bubbly flow. By combining hot-film
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measurements and phase discrimination we were able, with a conditional averaging,
to measure the perturbation induced in the liquid velocity in the vicinity of a test
bubble in a swarm. We thus observed the attenuation of the length of its wake
when the void fraction increases. We were also able to define statistics far away from
the interfaces accessible from one-point measurements. The method is based on the
estimation of the relaxation regions of the perturbations induced by bubble passages.
The far-field statistics, being calculated in a region where the spatial distribution of
the bubbles is uniform, are representative of the global dynamics of the interstitial
liquid. This method enables current models of the interstitial velocity to be tested. Our
definition of an interstitial average, even though it is introduced on signal processing
grounds, is consistent with these models. The drift concept and models which up to
now have been tested in relatively pure situations (isolated two-dimensional bubbles
without open trailing wakes (Bush & Eames 1998)) have been examined in this work
in a more complex situation. We have considered the rise of a uniform suspension of
many bubbles. While, at low void fraction, we found very good agreement between our
experimental results and the potential flow model developed by Eames et al. (2004), at
higher void fraction the influence of a rotational component of the flow is pronounced.
To include the influence of wakes intermingling with their neighbours, and to provide
better agreement for higher void fraction, we proposed an approximate correction,
but more fundamental work is needed. The examination of the far-field statistical
moments of higher order than the unconditional statistics will allow us in future to
discuss the near-field and far-field fluctuations of the velocity of the liquid subjected
to different mechanisms of generation and transport. Also, it would be interesting to
extend this methodology to spatial information about velocity field. The diagnostic
techniques developed provide a possible methodology for understanding high void
fraction flows, or flows around groups of bodies, such as in urban environments.

Véronique Roig would like to thank Ian Eames for many interesting discussions on
this research. This work was partly supported by an EEC Brite-EuRam project, ref.
no. BE 4322.
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